翻訳と辞書
Words near each other
・ Schuylkill Branch
・ Schuylkill Canal
・ Schuylkill Canal Association
・ Schuylkill County Airport
・ Schuylkill County Bridge No. 113
・ Schuylkill County Bridge No. 114
・ Schuylkill County, Pennsylvania
・ Schuylkill Expressway
・ Schuylkill Expressway Bridge
・ Schuylkill Fishing Company
・ Schuylkill Gap
・ Schuylkill Haven Area School District
・ Schuylkill Haven, Pennsylvania
・ Schuylkill Institute of Business and Technology
・ Schuylkill Mall
Schur's inequality
・ Schur's lemma
・ Schur's lemma (disambiguation)
・ Schur's lemma (from Riemannian geometry)
・ Schur's property
・ Schur's theorem
・ Schur-convex function
・ Schurman
・ Schurman Commission
・ Schurmann Family
・ Schurmsee
・ Schurr
・ Schurr High School
・ Schurre
・ Schurter


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schur's inequality : ウィキペディア英語版
Schur's inequality
In mathematics, Schur's inequality, named after Issai Schur,
establishes that for all non-negative real numbers
''x'', ''y'', ''z'' and a positive number ''t'',
:x^t (x-y)(x-z) + y^t (y-z)(y-x) + z^t (z-x)(z-y) \ge 0
with equality if and only if ''x = y = z'' or two of them are equal and the other is zero. When ''t'' is an even positive integer, the inequality holds for all real numbers ''x'', ''y'' and ''z''.
When t=1, the following well-known special case can be derived:
:x^3 + y^3 + z^3 + 3xyz \geq xy(x+y) + xz(x+z) + yz(y+z)
== Proof ==
Since the inequality is symmetric in x,y,z we may assume without loss of generality that x \geq y \geq z. Then the inequality
: (x-y)()+z^t(x-z)(y-z) \geq 0\,
clearly holds, since every term on the left-hand side of the equation is non-negative. This rearranges to Schur's inequality.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schur's inequality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.